STUDIES ON THERMAL STABILITY OF MIXED METAPHOSPHATES KLa(PO3)4 AND K2La(PO3)5

W. Jungowska and T. Znamierowska

DEPARTMENT OF INORGANIC CHEMISTRY, FACULTY OF ENGINEERING AND ECONOMICS, ACADEMY OF ECONOMICS, 53345 WROCLAW, POLAND

Within an investigation of the phase equilibria in the binary system $La(PO_3)_3$ -KPO₃, the thermal behaviour of the mixed metaphosphates $KLa(PO_3)_4$ and $K_2La(PO_3)_5$ has been examined.

There has recently been considerable interest in the lanthanides and their compounds (e.g. phosphates). A number of publications have described methods of obtaining mixed alkali metal-rare earth metaphosphates and also their X-ray structural and spectrophotometric examinations [1-3]. There is likewise and increasing number of literature reports on the phase equilibria in the binary systems $M^{I}PO_{3}$ -Ln(PO₃)₃ (where M^{I} = alkali metal, and Ln = rare earth). It can be concluded from these that the initial metaphosphates may form the following types of compounds: $M^{I}Ln(PO_{3})_{4}$ and $M^{I}_{2}Ln(PO_{3})_{5}$ [4-8].

At present, phase examinations on the ternary system La_2O_3 - K_2O - P_2O_5 are being carried out in this laboratory. There is a known binary section KPO₃-La(PO₃)₃ in this system [8], and the existence of potassium-lanthanum metaphosphates, KLa(PO₃)₄ and K₂La(PO₃)₅, has been discovered. Both compounds are formed incongruently, at 880 and 770°, respectively.

Experimental

The following commercial reagents were used for the investigations: KH_2PO_4 analytical grade, La_2O_3 99.9 %, $NH_4H_2PO_4$ analytical grade, $La(NO_3)_3$ analytical grade, and H_3PO_4 85 % analytical grade. KPO_3 , $La(PO_3)_3$, LaP_5O_{14} , $LaPO_4$, $KLa(PO_3)_4$ and $K_2La(PO_3)_5$ were synthesized in this laboratory. $La(PO_3)_3$ was produced from La_2O_3 and H_3PO_4 by

John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest sintering a stoichiometric mixture of these substances at 800° for 3 days. LaP₅O₁₄ was prepared by sintering La₂O₃ and H₃PO₄ (in the molar ratio P/La = 20) at 600° for 1 day and at 700° for 2 days. LaPO₄ was obtained by crystallization from an aqueous solution of 0.4 % La₂O₃ (as La(NO₃)₃) and 15 % P₂O₅ (as H₃PO₄). The mixture was placed in a round-bottomed flask and was brought to the boil under a reflux condenser and held there for 6 h. The phosphate KLa(PO₃)₄ was prepared by sintering 1:1 stoichiometric mixture of KPO₃ and La(PO₃)₃ at 800° for 3 days. The phosphate K₂La(PO₃)₅ was produced by sintering a 1:2 molar mixture of La(PO₃)₃ and KPO₃ at 700° for 3 days.

The investigations were carried out by differential thermal analysis, powder X-ray diffraction and IR spectroscopy. The thermal analysis was performed by means of a derivatograph type 3427 (MOM, Hungary) within the temperature range 20-1300°, at a heating rate of 10 deg/min, in a platinum cup, in air atmosphere. The reference substance was Al₂O₃. The powder Xray analysis was performed in an HZG-4 diffractometer with CuK_{α} radiation.

Results

The thermal and X-ray investigations showed that the mixed metaphosphates $KLa(PO_3)_4$ and $K_2La(PO_3)_5$ are stable in the temperature range up to 840 and 770°, respectively, in the section KPO_3 -La(PO_3)_3. This is confirmed by the DTA curves presented in Fig. 1.

In the ternary system La₂O₃-K₂O-P₂O₅, in the part rich in P₂O₅, it was found that the temperature range of stability of the mixed metaphosphates under discussion undergoes changes.

The behaviour of KLa(PO₃)₄ was examined in the presence of various quantities of NH₄H₂PO₄ (as a source of P₂O₅), LaP₅O₁₄₅ and LaPO₄. Samples of KLa(PO₃)₄ containing 5 and 15 wt% of P₂O₅ were sintered at 600° for 4 h, and then at 800° for 1 h. X-ray analysis of the sinters showed that: (a) the addition of 5% P₂O₅ caused some decomposition of KLa(PO₃)₄ to La(PO₃)₃ at 800° only, (b) the addition of 15% P₂O₅ caused the partial decomposition of KLa(PO₃)₄ to LaP₅O₁₄ at 600°, and at 800° there was complete decomposition to La(PO₃)₃. X-ray examinations revealed the presence of KLa(PO₃)₄ and LaP₅O₁₄ in different mixtures of KLa(PO₃)₄ and LaP₅O₁₄ sintered at 700° for 4 h. The same preparations sintered at 800° for 2 h were a mixture of La(PO₃)₃ and LaP₅O₁₄. Figure 2a presents a DTA curve of a mixture with the composition 80 wt% of KLa(PO₃)₄ and

20 wt% of LaP₅O₁₄. The effect at 750° in the curve results from the decomposition of KLa(PO₃)₄.

Fig. 1 DTA curves of a) K2La(PO3)5, b) KLa(PO3)4

Thermal analysis of preliminarily synthesized preparations forming a mixture of $KLa(PO_3)_4$ and $LaPO_4$ with different compositions showed that an endothermic effect appeared systematically in the temperature range 800-840°. X-ray analysis of these mixtures sintered at 760° for 20 h demonstrated the presence of $KLa(PO_3)_4$ and $LaPO_4$, while thermal

Fig. 2 DTA curves of samples containing: a) 80 wt% KLa(PO3)4, 20 wt% LaP5O14, b) 90 wt% KLa(PO3)4, 10 wt% LaPO4

analysis after heating showed the presence of $La(PO_3)_3$ and $LaPO_4$. Hence, the addition of LaPO₄ does not really influence the range of $KLa(PO_3)_4$ stability.

The behaviour of the mixed metaphosphate $K_2La(PO_3)_5$ in the presence of various quantities of P_2O_5 (in the form of $NH_4H_2PO_4$) was also examined. Samples of $K_2La(PO_3)_5$ containing 5 or 20 wt% of P_2O_5 were sintered at 300° for 4 h and at 500° for 4 h again. X-ray analysis of the sinters obtained in this way showed that even at 500°: a) $K_2La(PO_3)_5$ undergoes partial decomposition to $KLa(PO_3)_4$ in the presence of 5% P_2O_5 , b) complete decomposition to $KLa(PO_3)_4$ occurs in the presence of 20% P_2O_5 .

To summarize, it should be pointed out that $KLa(PO_3)_4$ is a more stable compound than $K_2La(PO_3)_5$. The temperature of $KLa(PO_3)_4$ decomposition and the nature of the products formed depend on the additives and their proportions.

References

1 N. N. Czudinova and N. V. Vinogradova, Neorg. Mater., 11 (1975) 773.

2 N. N Czudinova and N. V. Vinogradova, Neorg. Mater., 14 (1978) 2049.

3 V. A. Madij and I. Krasilov, Neorg. Mater., 14 (1978) 2061.

4 M. Rzaigui and N. K. Ariguib, J. Solid State Chem., 39 (1981) 309.

5 E. N. Federova and L. K. Szmatok, Neorg. Mater., 22 (1986) 480.

6 M. Rzaigui, M. Dabbabi and N. Kbir-Ariguib, J. Chim. Phys., 76 (1981) 563.

7 D. B. Hassen, N. Kbir-Ariguib and M. Trabelsi, Thermochim Acta, 79 (1984) 251.

8 M. Ferid, N. K. Ariguib and M. Trabelsi, Mater. Chem. Phys., 10 (1984) 175.

Zusammenfassung — Innerhalb einer Studie über Phasengleichgewichte im binären System La(PO₃)₃ - KPO₃ wurde das Verhalten der Mischsalze KLa(PO₃)₄ und K₂La(PO₃)₅ in Hinsicht auf eine thermische Behandlung untersucht.